Math 180 Discussion Problems

Tuesday, October 7, 2014

1. Have you reviewed trigonometry? No notes this time - you have to know this off the top of your head!
(a) Is the following argument correct? Why or why not?

$$
\cos \left(\frac{11 \pi}{12}\right)=\cos \left(\frac{2 \pi}{3}\right)+\cos \left(\frac{\pi}{4}\right)=\frac{-1}{2}+\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{2}
$$

If it is wrong, fix it.
(b) How about this one?

$$
\sin \left(\frac{-\pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)=\frac{-\sqrt{3}}{2}
$$

Again, if it's wrong, fix it.
2. What is $\log _{10}(0.01)$? How about $\log _{7}(1)$? And $\log _{2}(16)$?
3. Consider the function $L(t)=1-\ln \left(1-x^{2}\right)$.
(a) What is the domain of $L(t)$?
(b) What is $L^{\prime}(t)$?
(c) Using the information from the previous parts, sketch a graph of $L(t)$.
4. Considering the function $f(x)=x^{3}-1$, what is $f^{-1}(x)$?
5. Find the derivative of $g(x)=2^{x-1}$.
6. If $x=\tan y$, what is $\frac{d y}{d x}$ in terms of x ?
7. Find all points at which the curve $x^{2}-y^{2}=x^{4}$ has horizontal or vertical tangent lines.
8. Evaluate the limit, justifying your answer completely.

$$
\lim _{x \rightarrow \infty} \frac{\sin (x)-\sqrt{4 x^{2}-1}}{x-\cos ^{2}(x)}
$$

9. Consider the function $s(x)=7$. Derive $s^{\prime}(x)$ from the definition.
